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The description of multicomponent mixtures, with an expression for the free energy or the entropy in the form of a density 
functional [l, 21, is extended to the case when the system contains surface phases, when the finite number of particles of the 
mixture can be linked with certain geometrical surfaces. Equations are obtained which define the static state and hydrodynamic 
flows for a mixture with an arbitrary number of volume and surface phases. 0 2001 Elsevier Science Ltd. All rights reserved. 

We previously considered [l, 21 the case of a continuous distribution of the components of a mixture 
in a volume. A description of the surface layers was possible in this case, strictly speaking, when the 
mean distance between molecules of the mixture is considerably less than the layer thickness. If this 
condition is not satisfied, the approach proposed in this paper must be used. 

1. DESCRIPTION OF THE SURFACE PHASES IN CLASSICAL 
THERMODYNAMICS 

We will consider surface phases arises in a layer of infinitesimal thickness that on a solid surface which 
is in contact with a multicomponent mixture (i.e. adsorption layers). The classical thermodynamic 
description of such systems enables a number of general relations to be established [3] for equilibrium 
states, ignoring the spatial arrangement of the phases. In particular, it is assumed that the properties 
of the surface are everywhere the same. 

We briefly describe below some results of classical thermodynamics, which will be required later. The 
Latin subscripts i, j and k take values 1, . . . , K, corresponding to the numbers of the components of 
the mixture. Summation over repeated sub- or superscripts is understood. 

For a homogeneous state in the volume, T, is the absolute temperature, S, is the entropy, U,, is the 
internal energy, Nvi is the number of particles of the component with number i in moles, and Vis the 
volume of the mixture. Similarly, for a homogeneous state on the surface, T, is the absolute temperature, 
S, is the entropy, Us is the internal energy, Nsi is the number of particles of the component with number 
i in moles and A is the area of the surface corresponding to the state considered. 

The following differential relations hold 

T~S, = dl/, - X,dN, + pi 

TsdSs = dUs - XsidN,i + psdA 
(1.1) 

Here xui and Xsi are the chemical potentials of the component with number i for states in the volume 
and on the surface, respectively, pv is the hydrostatic pressure, and ps is the surface tension with the 
opposite sign. We postulate that the volume entropy S, = S,(U,,, Nui, V) and the surface entropy 
S, = S,(U,, Nsi,A) are homogeneous first-order functions. This property, in conjunction with differential 
relations (1.1) leads to the equations 

r, S =U” -~ h$++Vv. T,Ss=Us-U,iNsi+psA (1.2) 

Using the property of homogeneity, we can determine the values of the entropy per unit volume 
s, = SJVas a function of the energy density u, = UJVand of the volume densities of the components 
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n”i = Nvi/V, and also the entropy per unit area s, = S&l as a function of the surface energy density 
u, = Us/A and of the surface densities of the components n,i = NfiIA. 

Here relations (l.l), (1.2) h ave the following analogies in terms of the volume and surface densities 
(0 = V,S) 

Tads, = due - xaidn,i, T~S, = Ua - Xdinoi + PO (1.3) 

Consider the situation when there are L, homogeneous states in the volume and L, homogeneous 
states on the surface. Quantities related to one of the homogeneous sates will be indicated by a 
superscript Latin capital letter - the number of the state. Neglecting the interface effect, we can write 
the following expressions for the total entropy, energy and numbers of particles of the system components 

(1.4) 

A stable equilibrium multiphase state ensures an absolute maximum of functional (1.4) for specified 
values of the energy (the first relation of (1.5)), the number of particles of the components (the second 
relation of (1.5)) and also of the total volume and area 

The problem of finding the maximum of functional (1.4) with constraints (1.5) and (1.6) can be reduced 
to the problem of constructing a convex shell of a certain auxiliary function. We will describe this procedure. 

For an arbitrary set of values of the energy U, the number of particles of the components Ni, the 
volume V, and the area A we determine the (K + 2)-dimensional vector with components 

zi = UN, . . . . z,,,, = N,,lN, . . . . zK+, = VIN 

ZK+Z=AIN; N=N,+N2+...+NK,n= l,..., (K-l) 

In view of the property of homogeneity of the entropy functions mentioned above, we can define the 
following auxiliary functions 

h v = hJz) = -SJU, Ni, V)fN 

h, = h,(z) = -S,(U) N, A)IN 

h=h(z) = min(h,(z), hdz)) 

We will assume that the functions S, and S, are non-negative and vanish when I/ = 0 and when 
A = 0 respectively. This assumption agrees with the third law of thermodynamics. 

Then, finding the maximum of functional (1.4) with constraints (1.5) and (1.6) is equivalent to the 
standard problem of convex analysis [4,5] of constructing a convex shell of the function h(z). The extreme 
points [4,5] of this convex shell h*(z) correspond to stable homogeneous states, i.e. phases. The expansion 
of an arbitrary state z in a linear combination of extreme points 

z= 4: hAzA, h(z) = i AAh( i hA = 1. hA 20 
A=l A=1 A=1 

is interpreted physically as the decomposition of a state of the mixture, described by the vector of the 
mean values of z, into phases zA with corresponding molar fractions A*. One of the consequences of 
the well-known Caratheodory theorem [4,5] on the number of extreme points is the following constraint 
on the number of phases 

L=L,+L,cK+3 

We recall that there is a more restrictive constraint on the number of phases for the states of the 
mixture in the volume, namely, L s K + 2. 
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If an equilibrium heterogeneous state exists, the conditions for an extremum of functional (1.4) are 
the necessary conditions for thermodynamic equilibrium. Relations (1.3) enable us to formulate these 
conditions in the form of equality of the temperatures and chemical potentials in all the phases 

TA = qB =T,. ?& =x; =x,i (1.7) 

and also equality of the pressures for the volume phases and equality of the surface tensions for the 
surface phases 

PVA = P” *v P,B = Ps. (1.8) 

Conditions (1.7) remain true if we take the interface effect into account. Conditions (1.8) are changed: 
interphase jumps in the pressure and surface tension, which depend on the curvature of the interface, 
appear in them. 

2. THE DENSITY FUNCTIONAL METHOD IN STATICS 

Suppose the mixture occupies a spatial region D with a smooth boundary 80. We will assume that a0 
coincides with the surface of the fixed and undeformed solid phase, on which it is possible for adsorption 
layers to form. If the characteristic thickness of the adsorption layer is much less than the characteristic 
radius of curvature of the surface 30 and of the characteristic dimensions of the region D, we can assume 
that the layer is of infinitesimal thickness. 

Here and below the Latin subscripts a, b and c take the values 1, 2, 3, corresponding to Cartesian 
coordinates in the space x0; the Greek superscripts ~1, fi and y, take the values 1 and 2, corresponding 
to curvilinear coordinates on the surfaceya, 3, = a/ax” and V, is the covariant derivative on the surface 
corresponding to the induced metric. Summation over repeated sub- or superscripts is implied. We will 
use the following notation for the derivatives for the functions g, which depend on the absolute 
temperature T and on the molar densities of the components ni, 

We will take the expression for the total energy of the mixture in the form 

(2.1) 

6, = s, - ;pga~va7y,~ - 3 PqgaPVansiVgna 

The entropy densities s, and s, are assumed to be functions of T,, n,i and T,, nsi respectively, 
o = o(T,, n”i) > 0, P = P(T,, n,J > 0, oq = o&Q and PO = P& II k are positive-definite symmetrical s > 
matrices and gap is the metric on the surface do. 

The case when expression (2.1) contains only the first term was investigated previously in [2]. The 
second term is introduced to describe the surface phases, taking into account the interface structure, 
by analogy with the first term. 

Remark. Expression (2.1) contains no terms having products of the temperature gradients and the density gradients, and the 
coefficients CL,, and p,, are independent of the temperature. This ensures that theory is compatible with the zeroth law of 
thermodynamics [2], i.e. with the condition that the temperature should be the same in all parts of the system for equilibrium 
states. 

We will also employ the usual expressions for the total internal energy and the numbers of particles 
of the components 
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Nil,, = j Q,dV+ j n&A (2.3) 
D aD 

In expression (2.2) cp = cp(x”) is the gravitational potential, p = mpn,, pS = Minsi are the mass densities 
and mi is the mass of a mole of the component with number i. 

Varying functional (2.1) we obtain the expression 

(2.4) 

Here 1, is the inward normal to the boundary 30 and A,, = &a,, A, = gaBVaVP. 
The conditions for an extremum of functional (2.1) for specified values of the quantities (2.2) and 

(2.3) has the form 

ss,cl, - h,6U,, + hiSNit, = 0 (25) 

where ho and hi are Lagrange multipliers. Substituting expression (2.4) into (2.5) we obtain the equalities 

~a0 - hOU,,T = 0, @oi - hO(U0.i f micP) + h, = 0; d =U ) S (2.6) 

x0= 0, Xi= 0 (2.7) 

Relations (2.7) are the boundary conditions for Eqs (2.6) when o = u. 
The physical meaning of the Lagrange multipliers was discussed previously in [2]. For a homogeneous 

state in a volume in which there are no gravitational forces, we have the relations ho = T;‘, h, = T;‘x,,. 
In exactly the same way, for a homogeneous state on the surface when there are no gravitational forces 
the following equations hold: ho = T;‘, Al = T;‘xJj. 

Expression (2.1) is compatible with the zeroth law of thermodynamics, which asserts that for 
thermodynamic equilibrium the temperature in all parts of the system is the same. The following lemma 
confirms this. 

Lemma. For a specified density distribution in the volume n,i = n”i(P) and on the surface nsi = n,i(y*) 
the maximum of functional (2.1), with additional condition (2.2), is reached at a certain temperature, 
which is the same at all points of the mixture. 

Proof. For a specified value of u,~,, a temperature T,, exists such that Eq. (2.2) is satisfied when r, = T, = T,,. 
This is a consequence of the monotonic temperature dependence of the functions I(, and II,~ 

%.r’Q Us.T >o (2.8) 

For brevity, we will denote quantities calculated when r,, = T, = 7’,, by an additional zero subscript. We WIII 
take a certain arbitrary temperature distribution T,, = ~&!‘), r, = T,(y’), which satisfies Eq. (2.2). It is obvious 
that 

s-so G i, (S” - $/ow+ J (ss-s,5,)dA 
aD 

(2 9) 
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where the equality sign only applies when T, = T, = Ta. In addition, the following equality holds 

o=j (q/ - uuo W + j (us - ~$0 MA 
D .3D 

Note that, by virtue of inequalities (2.8), the following inequalities hold 

=-T,-‘u& CO; (T=u, s 

"i 

We therefore have the relations 

sg -so0 = To%+, -~~~)+a,; (T=u, s (2.11) 

where a, < 0, a, G 0, and the equality signs only apply when TV = To and T, = TO respectively at the given 
point. Substituting (2.11) into the right-hand side of inequality (2.9) and using (2.10) we obtain the assertion of 
the lemma. 

It was shown in [l] the Eqs (2.6) when cr = u describe, in particular, the interface structure in a volume. 
We will show, using a simple example, how Eqs (2.6) describe the interface structure on a surface when 
(3 = s. 

We will consider the one-dimensional case (which corresponds to a cylindrical surface 80) without 
gravitational forces. Suppose y is the corresponding spatial coordinate. By the lemma, we can assume 
T, = const. The change in surface densities is described by the group of equations (2.6) with o = s 

OS; - hou,*; + h; = 0 (2.12) 

qi =s~.;+. .a .a Jk,r y%J ynsk + &j.kaynskaYnSj + hja&j 

This is a system of K equations in Kunknown n,i = nAy). It can be interpreted as a system of Lagrange 
equations for the Lagrangian 

1 
L = - f3iii3ynsiaynsj - s, + hou, - hinsi 

2 

In particular, we have the integral 

J = ~f3,a,n,ja,n, + s, - hou, + hinsi 

If there are several singular points of system (2.12) on the surface J = const, solutions nsi = n,i(y) 
can exist which converge to singular points asy + 2 m. These solutions describe the interface structure 
for coexisting phases corresponding to the singular points. 

Hence, the one-dimensional problem of the interface structure on a surface is formally completely 
analogous to the corresponding one-dimensional problem in a volume [l]. For non-one-dimensional 
problems (for example, for surfaces which differ from cylindrical) the multiphase states on a surface 
may have qualitatively new geometrical properties. The problem must be investigated by methods of 
the theory of elliptical systems of differential equations on two-dimensional surfaces. 

3. THE DENSITY FUNCTIONAL METHOD IN DYNAMICS 

We will take as the equations of the dynamics of a mixture the usual hydrodynamic equations of the 
conservation of the components, momentum and energy. In the volume the system of these equations 
has the form 

(3.1) 
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Here Z”,i is the flux of the i-th component, $ = oTrmiZ$ is the mean mass velocity, II$ is the momentum 

flux, K, = $,v:vf is the kinetic energy of a particle of the medium and Qt is the energy flux. 

In order to write the hydrodynamic equations on the surface we will introduce three-dimensional 
basis vectors $ = dxaldya corresponding to the system of coordinates on the surfacey’. The set of three- 
dimensional vectors eg and the vector of the inward normal to the surface I” form a basis in three- 
dimensional space at each point of the surface. The Greek subscripts in the set ei can be raised and 
lowered using the metric tensor gas. By definition, the set of vectors e: satisfies the relations 

eiei = gcla, gaaeiei + l,i, = Pb 

For an adsorbed layer the equations of conservation of the components, momentum and energy have 
the form 

a,n, +V,I,4: +i*l~i =O (3.2) 

(3.3) 

a,(& +u,)+V,Q,a +1&f =E+(-p,&+p+P)uf (3.4) 

Here Z: is the flux of the component with number i, u’f = QJlmiZz is the mass velocity in the layer 

in curvilinear coordinates, WY = LJ~ eg is the mass velocity in Cartesian coordinates, KS = $&LJ~ is the 

kinetic energy of a particle of the layer, IIys is the momentum flux in the layer, Ra is the force arising 
from the action of the solid phase, Qy is the energy flux in the layer and E is the heat-exchange parameter 
of the adsorption layer with the rigid body. 

It is convenient to rewrite the three equations (3.3) in space in terms of the tangential and normal 
components. To do this we will represent the momentum flux and the external force in the form 

II$ = xaBei + cPf,, Ra = rue: + (f, (3.5) 

xaa = ll~pew, tp = KI~p/,, ra = Raem, 6 = Rafa 

Substituting relations (3.5) into (3.3) and using the equality Vpet = -b,pZ”, where b,~ = $J’e; is the 
second fundamental form of the surface, we obtain 

The last equation can be regarded as a definition of the quantity [ - the normal reaction of the rigid 
body, if all the remaining quantities are known. This equation will therefore not be used henceforth. 

In Eqs (3.1)-(3.3) we will introduce, in the usual way, diffusion fluxes, the stress tensor and the heat 
flux vector respectively 

afi = Z,4. - rrJ/; ( p,“b = 4-p + p”u$/,” 

q;=Qf-(K” +y,)u;+p;Obu,b 

These equations can then be converted to the form 

(3.7) 

(3.8) 

3,s = dbad -a,tqi +~a) (3.9) 
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Similarly, for the surface phases we introduce diffusion fluxes, the stress tensor and the heat flux vector, 
respectively 

Equations (3.2) (3.6) and (3.4) can then be converted to the form 

&ns; = -V,(n,,a,” +Q;)= -1,,(n.,,,u,o +ci) (3.10) 

&(a, +u,pV@P = VpPy - {Pbp” - lp?Q”qy - ga$,vp + ra (3.11) 

-V,(q,u +u,up)+~&&“l-p -QY)+E (3.12) 

To close the system of dynamic equations (3.7)-(3.12) it is necessary to specify expressions for the 
quantities 

i.e. to specify material relations. The standard requirement which the material relations must satisfy is 
the condition that the production of entropy should be non-negative, i.e. the condition that the change 
in entropy, after subtracting the contribution of heat exchange with the surroundings, is non-negative. 

We will assume that boundary conditions (2.7) are also satisfied in the dynamic theory. Then, the 
derivative with respect to time of the entropy functional (2.1) can be evaluated using Eqs (3.7), (3.9), 
(3.10) and (3.12). The result is the expression 

$= j (~oh?a~U,b -ada” +u:‘G ))+‘y,i(-a,(q#,” +fg)w+ 
D 

+! V'so(~s~Va~ +S”L!b, -Va(qsa+upu,)+f,(u,eOLb~,bO-~)+E)+ 
aD 

(3.13) 

where we have used the notation 

Y uo =~vo%-,‘T* ‘r,i =%; -@“O%-,‘T’c.i 

w,O = qf)u,:, yxi = @si - @sO";kus.i 

To simply expression (3.13) we will introduce the following auxiliary quantities 

zfb =-aa,~,a~T, -a,a,~iab~i +6,,(1_9" +Y,,~ +yvisi) 
c sap = -aV,T,VpT, - a~VansiVpnsj +g,p(6, + Ys,+, + Ys;n,i) 

These quantities satisfy the identities 

CL -YaOy:, -“viaa% =O 

gdvyrsIlp -U,vaY~‘,o -“sjvaY~i =O 

We impose the following additional boundary conditions on the surface 80 

Y IJO =Y30, Y,; = YJi 

(3.14) 

(3.15) 

(3.16) 
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Then, using integration by parts and taking relations (3.14)-(3.16) into account, expression (3.13) 
can be converted as follows: 

(3.17) 

The expression for the change in entropy (3.17) has a canonical form, used in the thermodynamics 
of irreversible processes. The first term on the right-hand side of Eq. (3.17) represents the change in 
entropy due to the influx of heat. The quantity T, has the meaning of the generalized temperature. The 
reasons why this quantity differs from the temperature T, were discussed previously in [2]. In the 
isothermal case all the definitions of the temperatures are identical: T, = T, = T,. The quantities 
o, and o, represent the production of entropy in the volume and on the surface respectively. The 
condition for the second and third terms on the right-hand side of Eq. (3.17) to be non-negative imposes 
considerable limitations on the material relations, although it does not fix them uniquely. 

We will present one of the versions corresponding to the classical Newton-Fick-Fourier laws 

(3.18) 

Here Q, uv, Q, us, v are non-negative dissipative coefficients and MtB, MtB (A, B = 0, . . . ,,K) are 
non-negative symmetrical matrices, which satisfy the additional conditions miM:B = 0, m,MiB = 0. 
Expressions (3.18), apart from the last one, represent a set of material relations which close the 
hydrodynamic problem. The last equation of (3.18) is an additional boundary condition, which relates 
the velocity field in the volume and on the surface. We emphasize that, in the theory considered, there 
is no no-slip condition, since the possibility of adsorption and desorption presupposes a non-zero mean- 
mass velocity on JO. 

The hydrodynamic model constructed corresponds to the static theory developed in Section 2: the 
stationary solutions of the hydrodynamic equations are identical with the solutions of the equilibrium 
equations (2.6). The proof of this assertion is completely analogous to the proofs presented previously 
in [l, 21. 
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